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The processes of  sampling (aspiration) to an input tube of an aspiration probe from an ambient 
air f low are studied numerically. The air f low is simulated on the basis of  three-dimensional 
Navier-Stokes equations for  an incompressible fluid. The method proposed allows calculation of 
the aspiration efficiency in the case of rather complicated shapes of  the limiting trajectories of 
the particles. Dependences of the aspiration efficiency on the mean velocity of suction of air 
into the tube and the size of particles for  a given free-stream velocity are obtained. 

I n t r o d u c t i o n .  Analysis of atmospheric and industrial aerosols involves aspiration of particles into 
samplers, whose output is connected to a metering device or a filter. A certain fraction of particles from the 
air sucked in does not enter the output metering device due to particle inertia (the particle trajectories do 
not coincide with the streamlines, particularly near the probe entrance, where the air velocity gradients are 
high) and deposition of particle~ in the inner duct of the probe [1]. Under certain conditions, "extraneous" 
particles from the air flowing around the probe can enter the probe due to their inertia. In addition, there 
exists an effect of secondary aspiration, when the particles deposited on or that  recoil from the outer surface 
of the probe are sucked into the probe [1]. Thus, the concentration of particles in tile metering device of the 
probe is usually different from the concentration in the air flow. The measure of distortion of the disperse 
cornposition of an aerosol during aspiration is the aspiration efficiency 

A = c/co, (1) 

where c and co are the mean-flow concentrations of a given fraction of the aerosol at the output of the probe 
(measured value) and in the volume of the air flow under study (true value), respectively. We distinguish the 
efficiency of external aspiration 

A~ = ce/co (2) 

and internal aspiration 

Ap = c/c~. (3) 

tIere Ce is the mean-flow concentration of particles of a given fraction at the probe input. Obviously, tile total 
aspiration efficiency is 

A = ApA~. 

It is known that the value of A for the simplest and most frequently used probe with a cylindrical input 
tube can significantly differ from unity. Therefore, the design and use of these probes require quantitative 
data on aspiration efficiency. 
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Many papers deal with determining the errors of aspiration into a tube (see, for example, the review 
in [2]). However, for many cases, in particular, for aspiration into a tube oriented at an arbitrary angle to the 
flow, there are no reliable relationships between the aspiration efficiency and the governing parameters, such 
as the diameters of the particle dp and the tube d, the velocity of air in the free stream W and in the tube 
V, and the angle between the flow direction and the tube axis a. 

Semi-empirical relationships obtained in [2-5] on the basis of experimental data do not describe the 
entire range of the governing parameters; moreover, they agree poorly with each other. Experimental studies 
of the aspiration process have been mainly conducted using a method of comparison, where the aspiration 
efficiency was determined as the ratio of flow concentrations of a monodispersed aerosol measured by the 
probe examined and by the reference probe. In this case, the total aspiration efficiency is measured. It should 
be noted that this method is rather inaccurate because of the different variants of particle behavior when the 
particles are in contact with the outer and inner surfaces of the tube: the particles can stick, roll, blow off, 
recoil, or split. Thus, the measured concentration of the particles depends on the physicochemical properties 
of the particles and the tube surface. These factors are possibly responsible for the large scatter typical of 
data obtained by the method of comparison. The most reliable data on the efficiency of external aspiration 
were obtained by the method of limiting trajectories. The essence of this method is the use of optical methods 
to determine the particle trajectories closed on the butt-end edges of the probe and limiting the region of 
particles entering the probe. The diameter of the cross section limited by these trajectories far from the probe, 
i.e., the diameter of the tube of limiting trajectories, is the object of measurement in the method mentioned 
[6, 7]. 

If the flow is not parallel to the tube axis (particularly, at high values of the angle a), the cross section 
of the tube of limiting trajectories has a rather complicated shape, and it is very difficult to measure its area 
experimentally (the authors are not aware of any papers on this topic). Direct deposition of the particles 
on the inner surface of the tube can occur. Therefore, it is important not only to know the total aspiration 
efficiency, but also to take into account the effect of particle recoil and secondary aspiration. 

Numerical studies allow one to take into account the effect of various factors. In particular, it is possible 
to calculate the aspiration efficiency for the following limiting cases: all particles that touched the solid wall 
do not enter the probe; the particles experience elastic reflection from the wall. It is possible to calculate the 
aspiration efficiency into a tube with an arbitrary orientation in an air flow only by solving three-dimensional 
equations that describe the air flow. A model incorporating viscous effects should be used for exact account of 
the special features arising in the flow, such as separations, vortices and their decompositions, and circulation. 

Using the method of the solution of three-dimensional Navier-Stokes equations [8] effective for 
calculation of complex spatial flows, we simulated numerically a laminar air flow in the vicinity of the tube 
oriented at an angle of 90 ~ to the external flow and inside the tube. The particle trajectories were calculated 
from the known velocity field by integration of the equations of particle motion. The tubes of the limiting 
trajectories were determined; these tubes enclosed particles that enter the input and output orifices of the 
tube. The efficiencies of external and total aspiration were found under the condition that all particles that 
touched the solid wall do not enter the probe. Dependences of the aspiration efficiency on the mean velocity 
of air suction into the tube and the particle size for a given free-stream velocity were obtained. 

1. N u m e r i c a l  M e t h o d .  We assume that  the particle concentration in the air flow is low and the 
particles do not exert a noticeable effect on the velocity field, i.e., the reverse influence of the particles on 
the flow is ignored. We also assume that the air flow is laminar, steady, and incompressible. In this case, 
the aspiration process is simulated in two stages. At the first stage, we calculate the velocity field for the 
air near the tube and inside it by the numerical solution of three-dimensional incompressible Navier--Stokes 
equations. At the second stage, the trajectories of individual particles are calculated by integration of the 
equations of particle motion. We consider each of the stages in more detail. 

1.1. Calculation Method for" the Velocity Field. Three-dimensional equations of continuity and motion 
of an incompressible fluid, which are modified by introduction of a term with a derivative of pressure in time 
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[9, 10] into the cont inui ty  equation, are written in the form of integral conservation laws 

0/QdV=-fH.dS+fFdV, (4) ab- / 
V OV V 

where OV is a closed surface of an arbitrary fixed volume V, dS = n- dS is a surface element OV multiplied by 
the external uni t  normal  n to it, Q = (p, u, v, w) t, R = diag (1/e 2, 1, 1, 1), F = (0, f , ,  fy, fz) t, H = H vis + H in, 
H viS = - 1 / R e  (0, Vu ,  Vv,  Vw) t, H i" = (u, u u + p e l ,  vu+pe2 ,  w u + p e 3 )  t, u = (u, v, w) is the velocity vector in 
Cartesian coordinates,  p is the pressure, (fx, fy, fz) is the vector of mass forces, el = (1, 0, 0), e2 = (0, 1,0), and 
e3 = (0, 0, 1) form the basis of a Cartesian coordinate system, e 2 is the coefficient of artificial compressibility, 
and Re is the Reynolds number.  System (4) is applied to calculate steady flows of an incompressible fluid by 
the pseudo-transient  method.  

The approximat ion  of system (4) by the implicit method of finite volumes leads to the following 
difference equations:  

n - + ,  _ 
R ~,jk "~ I..I~n+l 

At Vok . . . . . .  ijk , 

= o~n+l -- ( H .  S)~+1a/2 + ( H .  S ~"+1 - (H .  q~,+l  (5) RHS~j  +1 - [ ( H .  "Ji+l/2 J j+1~2 ~'Jj-1/2 

+ ( H  S ~ n + l  - - ( H  ~ ' , n + l  ] n 
�9 ) k+l /2  " O)k -1 /2J  + F i j k V i j k "  

Here Qijk is the  mean value of Q in the cell V/jk, At  is the t ime step, and (H �9 S ~n+lji+l/2, (H " ~)j+1/2,~ and 

( H  �9 ~'Jk+l/2 are the difference fluxes through the boundaries of the cell V/jk. The vectors Si+U2, Sj+l/2 and 
Sk+l/2 are the normals  to the surfaccs i + 1/2, j ,  k, i , j  + 1/2, k and i, j ,  k + 1/2 whose absolute values are 
equal to their areas. 

The difference fluxes (H.  o~n+l (H-o~n+l  and (H .  ~ n + l  ~)i+1/2, ~)j+1/2, ~')k+1/2 in (5), in accordance with the splitting 
of H in (4), are presented as the sums of inviscid and viscid difference fluxes 

( H  �9 S)m+l /2  = ( H  in �9 S)m+l /2  + (Hvis - S )m+l /2  (m = i, j ,  k). 

Since the introduct ion of artificial compressibility into the continuity equation transforms the type of 
the inviscid par t  of the Navier-Stokes equations to hyperbolic, the inviscid difference fluxes are calculated in 
accordance with the theory of high-order quasi-monotonic difference schemes for nonlinear hyperbolic systems 
of equations (TVD schemes)[11, 12]: 

�9 1 in 
(H  i" �9 S)m+l/2 ~ [(H~ + Hm+l)  "Sin+l~2 -- IA[m+I/2A~+I/2Q] - W i n + l / 2 .  (6) 

Here [AI = A + - A -  and Am+U2 Q = Q,n+I - Qm. The  term Win+U2 in (6) is added to the first-order 
difference flux (enclosed in square brackets) to increase the approximation of the scheme to the third order. 
The term W m + l / 2  contains TVD limiters, which ensure the min imum necessary level of dissipation and allow 
one to avoid artificial dissipative terms in the initial equations. 

The matr ices  A + and A -  entering into (6) are the components  of the Jacobian of the inviscid flow 

A - 0(Hi"" S) = A +  + A - ,  (7) 
0q 

which have nonnegat ive  and nonpositive eigenvalues, respectively�9 
The Jacobian A can be split into a sum of constant-sign matrices by different methods�9 The optimal 

splitting from the viewpoint of the number  of ari thmetic operations in the numerical algorithm proposed and 
the stability margin is 

X + = 0.5(A + pI), 

where I = diag(1, 1, 1, 1), p = ]U[ + ~/U 2 + S .  S is the spectral radius of the matr ix A, and U = u .  S. 
The componen ts  of the viscous stress tensor in (H vis �9 S)m+1/2 are calculated using the velocity 

components averaged over the values from the neighboring cells and the second-order central-difference 
formulas. 
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Fig. 1 

Using linearization of (5) and (6) and approximate factorization of the resultant implicit operator 
arising in doing so, we obtain a system of linear equations 

(B - C+_I/2T / - C+_,I2T f - C+_ll2T[). S -1-  (S  + C~'+I/2T + + Cj+,I2T++ 

+. - - . + 1  R H S ~ . k  ' +C -+I/2Ti )/xV; = 

where 

1 Sin+l/2 �9 Sin+l /2  
C~+l/2 = A~+l/2 + ~ am+l/2D' a m + l l 2  = V . , + l l  ~ ' 

D = diag [0, 1, 1, l], Vm+l/2 = 0.5(V,n + Vm+l), A~b,,+l = Qn+l _ Q,~, 

B = R Vij~ 1 
+ Ree ~ (am-l/2 + am+t/2)D + 0.5 ~ (P,,,-l12 + P-,+l/2) I, 

m=i,j,k m=i,j,k 

T~ are the operators of unit shift along the grid nodes forward (plus) or backward (minus) over the subscript 
m (m = i, j ,  and k) from the node i, j ,  k. 

The system is solved by two fractional steps. At the first step, a single passage over the computational 
domain is performed in the ascending order of all subscripts: 

Ar = B - I ( R H S ~ k  + C+_,/2Ar + C+_l/2Ar + C+_,I2Ar 

The reverse direction is chosen at the second step: 

�9 - - 1  - -  n + l  - -  
A ~ j  +l  = Ar - B (Ci+ll2Ar + Cj+,/2AVa~i+llk + Ck+l/2Ar 

Since the matrix B is diagonal, its inversion is performed using an economic scalar procedure. 
1.2. Computational Domain. The air flow is numerically simulated in the present work only in the 

vicinity of a cylindrical thin-walled input tube and inside it, the effect of the whole probe on the flow being 
ignored. Therefore, the cylindrical domain shown in Fig. 1 was used as a computational domain. It has the 
following parameters: d is the tube diameter, r b is the radius of the cylindrical boundary, which is the external 
lateral boundary, and hi and h2 are the distances from the input edge of the tube to the upper and lower 
external boundaries of the computational domain, respectively. The values of rb, hl, and h2 are chosen rather 
large so that the disturbances from the tube do not reach the external (far) boundaries. 

1.3. Boundary Conditions. The so-called nonreflecting boundary conditions are set at the far boundaries 
z = hi, z = h2, and r = rb. These boundary conditions are based on hyperbolicity of the inviscid part of 
modified equations (4) (the effect of viscosity on the flow far from the solid walls is assumed to be insignificant). 
This approach allows us to avoid accumulation of spurious perturbations in the course of iterations inside the 
computational domain. 
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Fig. 2 

The no-slip conditions are set on the solid walls for velocity and the projection of the pressure gradient 
onto the normal to the wall is assumed equal to zero. 

The pressure that ensures a required flow rate of the air through the probe is specified at the lower 
butt-end of the tube through which the air enters the metering device of the probe. The velocity components 
are found by extrapolation of their values from the internal part of the computational domain. 

1.4. Calculation of Trajectories of Individual Particles and Aspiration Efficiency. The particle 
trajectories are calculated by solving the equation of motion written under the assumption that the resistance 
of air to a particle satisfies the Stokes law 

du 3rr#dp (v - u), 
rn d---t= Cc 

where m and dp are the particle mass and diameter, v is the velocity of the air, u is the particle velocity,/~ 
is the viscosity of the air, and Cc is the Cunningham correction for molecular slipping. Using the tube-orifice 
diameter d and the free-stream velocity W as the characteristic length and velocity, we can rewrite the above 
equation in the dimensionless form 

du ~ y l  I Stk ~ - u ,  (8) 

where Stk = ppCcd2W/(18#d) = rW/d  is the Stokes number,  v' = v / W  and u' = u /W are the dimensionless 
velocities of the air and the particle, t' = tW/d is the dimensionless time, and r is the particle relaxation 
time. 

Equation (8) is integrated by the fourth-order Runge-Kut ta  method. The trajectory begins from a 
certain chosen starting point sufficiently far from the tube so that the air could be considered as undisturbed 
and ends if the particle entered the tube, touched the wall (the particle size is ignored), or flew past the tube. 

The efficiencies of external and total aspiration are calculated as the ratios of the concentrations ce and 
c of the particles that enter only the input orifice of the tube and reach the output cross section, respectively, 
to the particle concentration co in an undisturbed flow far upstream from the tube. 

Two tubes of particle trajectories are depicted in Fig. 2, which shows schematically the aspiration 
process. The surface of the external tube 1 is the set of limiting trajectories of particles that still enter the 
input tube. The particles located outside of this surface do not enter the tube. The surface of the internal 
tube 2 is formed by the limiting trajectories of the particles reaching the output cross section of the tube. 

Let Se and S be the cross-sectional areas of the internal and external tubes of particle trajectories in 
the plane located in an undisturbed flow far upstream from the input tube of the probe perpendicular to the 
free-stream velocity vector. The particle concentration in the free stream is co. Equating the particle fluxes 
through the cross sections Se and S to the fluxes through the input and output cross sections of the tube, we 

obtain 

coW& = c~O, coWS = cQ, (9) 
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where Q = 0.25~rd2V0 is the volume flow rate of the air in the tube. According to the definitions of the total 
and external aspiration (1) and (2), we obtain from (9) 

c 4 W S  ce 4 W S e  
A =  m =  ~ Ae - - 

co 7r d2 Vo ' co ~r d2 Vo 

Thus, the calculation of the efficiencies of the total and external aspiration after determination of the velocity 
field of the air and the set of particle trajectories reduces to determination of the areas S and S~ of the cross 
sections of the tubes of particle trajectories that enter the output  and input cross sections of the probe. 

If the free-stream direction is parallel to the probe axis (see, for example, [13, 14], where the co- 
axial aspiration is studied numerically by solving two-dimensional Navier--Stokes equations), the problem 
is symmetrical, and it is sufficient to find one limiting trajectory bounding the particles that enter the tube 
using the method of halving. 

In our case, the shape of the desired cross section is rather complicated, as shown below, and the value 
of S was found by simple exhaustion of the starting points of the calculated trajectories and by summation 
of the vicinities of the starting points of those particles that enter the tube. 

2. A s s u m p t i o n s  A d o p t e d  in Ca lcu la t ion  of  t h e  Asp i r a t ion  Efficiency. The aspiration efficiency 
in a thin-walled tube depends on the following parameters: free-stream velocity W, mean suction velocity of 
the air in the tube V0, tube diameter d, particle diameter dp, particle density pp, air density pa, air viscosity 
#, and the angle between the free-stream direction and the tube axis a. According to the theory of dimension 
[15], a function of eight variables that include three dimensions (mass, length, and time) can be transformed 
to a function of 8 - 3 = 5 dimensional groups 

A = f(Stk,  R, Re, Rev, a), 

where R = W / V o ,  Re = p ~ , W d / #  is the Reynolds number, and Re v = p a W d v / #  is the Reynolds number of 
the particle. 

If Re v << 1, the resistance of the air to the particle satisfies the Stokes law with good accuracy. In 
accordance with Eq. (8), the particle motion is determined by the Stokes number and does not depend on the 
Reynolds number. The particle can be assigned an equivalent aerodynamic diameter, which is defined as the 
diameter of a spherical particle of unit density that has the same steady velocity of gravitational deposition in 
steady air. It is shown in a number of experimental [7] and theoretical [13, 14] publications that the Reynolds 
numbers of the tube Re and the particle Rep weakly affect the aspiration efficiency (the maximum error was 
7%). Therefore, the aspiration efficiency was determined in the present work as a dependence of the form 

A = f(Stk,  R, a), 

and the Reynolds number of the tube Re was fixed. 
The dependence of the aspiration efficiency on Re and Rep, and the ranges of velocities of the air and 

the tube and particle sizes, for which the Reynolds number effect can be ignored, require further investigation. 
3. Ca l cu l a t i on  R e s u l t s .  The aspiration efficiency into a tube of diameter d = 0.01 m was calculated 

for the free-stream velocity W = 5 m/see. The Reynolds number corresponding to these parameters was 
Re = 3450. The mean velocity of air suction in the tube V0 varied within 1.7 to 20 m/see, and the Stokes 
number varied from 0.01 to 0.40. 

In the course of preliminary calculations, we chose the values rb = 18d and hi = h 2  - -  10d, whose 
subsequent increase did not affect the solution obtained. The calculations on a sequence of grids allowed us 
to choose the optimal number of nodes of the general grid: 54 nodes in the radial direction, 47 nodes over 
the height of the computational domain (Oz  axis), and 20 nodes in the circumferential direction. The results 
presented below were obtained for these parameters of the domain and the grid. 

Figure 3 shows the air-flow pattern (streamlines) in the vicinity of the input tube of the probe and 
inside it for V0 = 10 m/see (which corresponds to the volume flow rate of the air through the tube Q = 
0.785 liter/see). 
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Figure 4 shows some particle trajectories for V0 = 10 m/sec and Stokes number Stk = 0.1 in the plane 
of symmetry of the problem y = 0. A zone adjacent to the upwind surface of the tube, wherein the particles 
do not hit due to their inertia, is observed inside the tube. Therefore, the deposition of the particles onto the 
metering device occurs very nonuniformly, with the maximum concentration of the particles at the downwind 
side of the tube. 

The calculated values of the external Ae and total A aspiration efficiency for different values of V0 and 
Stk are listed in Table 1. 

Figure 5 shows cross sections of the limiting tubes of particle trajectories, which enter the input cross 
section of the tube. They were obtained for different values of V0 and Stk. To compare the size, we projected the 
contour of the input tube of the probe onto these cross sections. Under each cross section, the corresponding 
value of the external aspiration Ae is given. Narrow bands of "clearance" on the background of these cross 
sections at rather high values of ~ ,  which correspond to particle trajectories that do not enter the probe, 
should be noted. At the same time, a certain number of particles outside these bands are sucked into the tube. 
The mechanism of this phenomenon is as follows. At rather high values of V0, particle trajectories turning 
upstream due to the suction of particles into the probe appear above the input cross section of the tube. The 
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TABLE 1 

Stk V0, m/see 

1 . 7 1 3 . 0  5 . 0 1 7 . 0  10.0 14.0 17.ol2o.o 
A~ 

0.010 0.865 0.888 0.98410.918 [ 0.976 [ 0.951 0.918 0.938 
0.020 0.790 0.835 0.943 10.889 I 0.951 0.932 0.901 0.923 
0.050 0.575 0.668 0.828 0.798 0.874 0.868 0.844 0.867 
0.070 0.452 0.566 0.747 0.738 0.822 0.824 0.803 0.825 
0.100 0.307 0.421 0.631 0.652 0.744 I 0.757 0.741 0.763 
0.200 0.100 0.148 0.299 0.387 0.507 I 0.553 0.554 0.585 
0.300 0.036 0.073 0.139 I 0.205 [ 0.332 0.398 0.436 0.450 
0.400 0.004 0.044 0.084 ~ 0.116 I 0.221 0.293 0.313 0.378 

A 

0.010 0.849 0.876 0.981 0.918 0.976 0.951 0.918 0.938 
0.020 0.771 0.819 0.936 0.888 0.951 0.932 0.901 0.923 
0.050 0.535 0.631 0.806 0.791 I 0.874 0.868 0.844 0.867 
0.070 0.387 0.495 0.702 0.723 0.822 0.824 0.783 0.825 

I 

0.100 0.206 0.274 0.497 0.602 0.742 0.757 0.726 0.763 
0.200 0.016 0.020 0.021 0.017 I 0.019 0.135 0.176 0.269 

I 

0.300 0 0.003 0.003 0.001 ] 0.003 0.006 0.039 0.082 
0.400 0 0 0.001 0.001 I 0.001 0.002 0.009 0.049 

particles flying closer to the input cross section do not have enough time to turn  in order to enter the probe 
and hit the downwind side of the tube near the leading edge. The totality of these particles constitute the 
"clearance" in the cross section of the limiting tube of particle trajectories. The particles flying above the 
latter experience turning along a more distant trajectory and have enough time to turn and enter the probe 
tube. 

On the basis of experimental  data, Hangal and Willeke [5] derived a semi-empirical relationship for the 
aspiration efficiency into a cylindrical tube located at an angle a to the incoming flow 

n = 1 + 3(R coso~ - 1)Stk '/2, (10) 

which approximates the experimental  values of the aspiration efficiency on the following intervals of the 
parameters entering into it: 0.02 ~< Stk ~< 0.20, 0.5 ~< R ~< 2.0, and 45 ~ ~< o~ ~< 90 ~ 

In turn, Vincent [2] proposed the formula 

1 + a ( a ) S t k  (cos a + 4 ~ )  (Rcos a - 1), 

which is simplified for a = 90 ~ and has the following form for the value of the coefficient G obtained by 
Vincent as a result of analysis of experimental data: 

1 
A = 1 + 8 .4StkR ~  (11) 

Figure 6 shows the aspiration efficiency as a function of Stk for different values of the parameter 
R, which were obtained from formulas (10) (solid curves) and (11) (dashed curves); the points refer to the 
external aspiration efficiency calculated by the method proposed in the present work. Curves 1-3 correspond 
to R = 0.5, 1.0, and t.7. The  calculation data  are in reasonable agreement with formula (10) for R = 1.7 
and 1, i.e., for low suction velocities V0 = 3 and 5 m/see. Greater differences are observed for R = 0.5 and 
V0 = 10 m/see. This is possibly related to the fact that the experimental data  approximated by formula (10) 
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were affected by secondary aspiration, i.e., the suction of particles that recoil from the external surface of the 
tube. This effect is usually manifested at high values of the velocity of the air at the tube input and small R 
when the air is sucked into the tube from a wide spatial region. In the calculations, the particles that touched 
the tube surface were considered to be lost. The data obtained are also in qualitative agreement with formula 
(11). On one hand, this formula is derived oil the basis of a theoretical model that ignores the secondary 
aspiration; on the other hand, it includes the coefficient G obtained from a large range of experimental data 
possibly affected by secondary aspiration. Thus, with account of the large scatter of experimental data and 
difficulties in their interpretation, the results obtained seem quite satisfactory. Experimental verification of 
the proposed mathematical model will possibly require a higher level of experiments. 

Conclus ion.  A universal method for calculation of the aspiration efficiency for real configurations of 
the probes has been proposed. The calculations performed have demonstrated the effectiveness and reliability 
of the method. It is planned to extend this method to study the processes of aspiration into tubes oriented 
at different angles to the flow, probes of different shapes, and also aspiration from turbulent flows. 

This work was partly supported by the Russian Foundation for Fundamental Research (Grant Nos. 
96-01-01934 and 98-01-00742). 
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